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1     Introduction 

The problem addressed in this project is that of tracking a single satellite in the neighborhood of several 
other closely spaced, similar satellites where there is measurement mixing between satellites observed at a 
ground based sensor. This situation has been referred to as the "furball problem." 

Tracking a single object or a group of objects in formation are both well studied and understood processes. 
What makes the "furball problem" unique is that the problem of tracking a single object in a formation is a 
generally undeveloped capability, especially with the type of sensor considered for this particular case. The 
ground based sensor considered takes a single measurement per sampling period. The single measurement 
can potentially be from any of the satellites in the sensor's measurement region. This implies that the sensor 
returns a single stream of measurements that are "mixed" in the sense that the satellite from which the 
measurement originated is not known to the sensor. 

The purpose of this report is to formally address the "furball problem" and present several effective data 
association methods for finding a viable solution. As will be shown, these data association techniques can 
be used to effectively sort out measurements and provide reliable tracking. 

The report is structured in the following manner. The problem is formally defined and the various data 
association techniques used to attack this problem are briefly presented in Sections 2 and 3. Section 4 
provides a comparison of the computational complexity between existing methods of tracking through batch 
processes and iterative methods described in Section 3. In Section 5 we provide an in depth description 
of the types of orbits being considered along with a description of the sensor based frames from which the 
measurements are taken. Simulation results are presented in Section (i, comparing the performances of the 
algorithms discussed in Section 3. Finally, some conclusions and possible areas of future work are discussed 
in Section (i. 

2    Problem Definition 

The exact problem considered in this report is a system consisting of j satellites in either the same orbit or 
in orbits very close to each other. For our purposes, two orbits being "close" can be defined as keeping all 
the orbital parameters the same for each orbit while perturbing the eccentricity of one by a small amount. 

A ground based sensor is being used in an attempt to track a single one of the j closely spaced satellites. 
The model used to describe the dynamics of the satellites written down in an earth centered inertial (ECI) 
coordinate frame is 

x^k) = f[k,Xiik - l)]+viik),t= 1,2, ...,j (1) 

where / contains the dynamics of the system, and the additive process noise Vi{k) is zero-mean and white 
with covariance Q{k). Since maneuvering is not considered in this initial work, the dynamics contain no 
control vector. The measurement due to each satellite is 

Ziik) = hlk.x^k - l)\+wi{k),i= 1,2,-J (2) 

where the additive noise Wi(k) is also assumed to be zero-mean and white with covariance i?(fc), and the func- 
tion h contains the coordinate transformation between ECI, South/East/Z (SEZ), and Range/Azimuth/Elevation 



(R/Az/El) coordinates. The ECI coordinates are Cartesian coordinates such that the x-axis is aligned with 
the vernal equinox, the z-axis is straight up through the north pole, and the y-axis is 90 degrees away from 
the x-axis in the equatorial plane such that the coordinates are right-handed. The SEZ coordinates are 
Cartesian coordinates based at the latitude and longitude position of whatever sensor is being used to take 
measurements, the x-axis aligned with due South, the y-axis aligned with the East, and the z-axis pointing 
directly out tangent to the surface of the earth. The range, azimuth, and elevation are measured from the 
SEZ frame. The range is a radial position measurement from the sensor, the azimuth is the angular measure 
from true north (—x in SEZ), and the elevation is the angular measure such that the tangent plane at the 
sensor has measure zero and directly above {z in SEZ) has measure 90 degrees. 

The measurements for this system are taken in R/Az/El coordinates and a single measurement is taken 
at each time step where the origin of that measurement is not known. For example, consider two satellites in 
closely spaced orbits, where we are trying to track satellite 1. Five measurements are taken, one of which is 
randomly from satellite 2. One possibility for how the list of measurements recorded by the sensor appears 
is 

{z{k),z{k + 1), z{k + 2),z{k + S),z{k + 4)} = {z1{k),zl{k + l),zi{k + 2),z2{k + 3), z1{k + 4)}. 

Only the set of measurements (with unknown origin) is provided. The actual identity of individual measure- 
ments on the right hand side is not known. The data association algorithm must sort out which measurement 
in the set originated from the satellite of interest. 

The above example can be used to introduce uniformity index (UI), a parameter in this study. The 
uniformity index is the percentage of the total measurements that are assumed to be from the correct 
satellite of interest. In the example, one of the five measurements is always assumed to be wrong, though 
its position remains unknown. Thus, the UI for this case is 80%. 

Due to the fact that the sensor is considered to be on the surface of the earth, in reality there will clearly 
be times when the two satellites moving in close proximity will be "out of view." This problem will be 
touched upon in the future work section, but for most of this report will be ignored. Thus for this report, it 
is assumed that there is only a single sensor being used to track satellites through an entire orbit. 

3    Algorithms 

3.1 The Batch Filter 

The Batch Filter is a widely used filtering technique that is often applied to systems were there is no mixing 
of measurements and where estimation does not need to be done in an online manner. The Batch Filter is 
used in these instances because it will in general converge to zero RMS error. Section I on computational 
complexity will illustrate a reason the Batch Filter is not always preferable. 

The implementation of the Batch Filter is as follows. Measurements from a single satellite are taken. 
The continuous time dynamics for the system are assumed to be known perfectly and can be written 

x{t) = f{t,x{t)). (3) 

Then for k measurements taken at discrete time steps dt, the continuous dynamics are used to solve backwards 
in time k time steps to obtain k estimates of the state at time zero, i.e., (xi(0),X2(0), ...,Xfe(0)) where xi(0) 
is obtained by integrating backwards from the first measurement by dt, X2(0) by integrating backwards from 
the second measurement by 2- dt, and so on up to A:. These k estimates of the initial state are then averaged 
to obtain a "best estimate," x(0), of the state at t = 0. The dynamics (3) can again be used, this time to 
integrate forward in time, starting from the x(0) and integrating forward in time to time k. This value is 
then the current estimate of state. This process is repeated for time fc + 1 up to the final measurement. In 
principle, if the noise associated with the measurements is white with zero mean, the batch estimates should 
eventually converge to zero RMS error as k goes to infinity. 

« 
3.2 The Extended Kalman Filter 

The EKF is a well known filtering method for nonlinear systems [ ]. The EKE is an estimation algorithm 
that maps the current estimate of the state, x{k — l|fc — 1), forward one time step. The current estimate is 



conditioned on the current state given the current measurement [ 

x{k - l\k - I) ^ E[xik - l)^-1] 

where 
Zk-1±{z(J),j = l, ,fc-l} 

is the cumulative set of measurements up to time fc — 1. The associated state error covariance matrix is 

P{k - l\k - 1) = E{[x{k - 1) - x{k - l\k - l)][x{k - 1) - x{k - l\k - l)]'^*-1}. (4) 

We proceed with finding x{k\k — 1), the prediction, by expanding the nonlinear function (1).    The 
expansion is accomplished by evaluating the Taylor series of (I) about the current estimate: x{k — l|fc — 1) 

x-(fc) = f[k, x{k - l\k - 1)] + fx{k - l)[x{k - 1) - x{k - l\k - 1)] + l/2^el[x(fc - 1) - x(A; - l|ik - 1)]' 
i=l 

■ fxx{k - l)[x{k - 1) - x{k - l\k - 1)] + higher-order terms + v(k - 1)    (5) 

where e; is the ith Cartesian basis vector and fx{k — 1) is the Jacobian of the vector / 

/.(/c-l)^^/'^-!^)]^-!!.-!)- 

Similarly, the Hessian of the ith component of / is 

fLik - 1) - [Vx vL fik - l,a;)]x=i(fe-i|fc-i)- 

The prediction of the state at time fc is then obtained by taking the expectation of the Taylor series expansion 
(5) conditioned on Zk~1 and neglecting higher-order terms: 

x{k\k - 1) = /[fc, x{k - l\k - 1)] + 1/2 J2 (uTtlf^ik - l)P{k - l|fc - 1)]. 

The state prediction error is 

"x 

x{k\k - 1) = fx{k - l)x(fc - l|fc - 1) + l/2^e!;[x
/(fc - l|fc - l)/^{fc - l)x(fc - l|fc - 1) 

t=l 

- TvifUk - l)P{k - l\k - I)]] + v{k - 1) 

and its covariance is 

P{k\k - 1) ^ E[x{k\k - l)x'{k\k - l)!^-1] = fx{k - l)P{k - l|fc - 1)/; + 1/2^ £ e^TvlfUk - 1) 

■ P{k - l|fc - \)Pxx{k - l)P{k - l|fc - I)] + Q{k - 1). 

The measurement prediction is 

f (fc|fc - 1) = h[k, x{k\k - I)] + 1/2 ]£ elTr[/ij;:E(fc)P(fc|fc - 1)]. 

The innovation is 

v{k) = z{k) - z{k\k - 1) 

= h[k,x{k\k- 1)] +w{k), 



and the innovation's covariance is 

nz    nz 

S{k) 4 hx{k)P{k\k - l)h'x{k) + l^J^e^lhUVPiklk - 1) ■ hUk)P{k\k - 1)] + R{k) 
i=i j=i 

where 

and 

The EKF gain is 

The filtered estimate is then 

hx{k) = [Vx^/(fc.a;)]U4(fc|fc-i) 

h-xxW = [Vx Vx hl{k,x)]x=s.(k\k_1y 

H/(fc)^F(fc|fc-lK.(fc)5-1(fc). 

i(fc|A;) = x{k\k - 1) + W(fc)i/(A;) (6) 

and the filtered estimate error covariance is 

P{k\k) = P{k\k - 1) - P{k\k - l)tix{k)S-l{k)hx{k)P{k\k - 1) 

= [I-W{k)hx{k)]P{k\k-\). 

3.3 Gating 

Gating is a method of determining whether or not it is likely that a particular measurement came from the 
object being tracked. Since we are assuming that the measurement at each time step is normally distributed 
around the truth measurement, it is possible to define a region in the measurement space where there is a 
high probability of finding the measurement 

T4(7)^{2:i.'(fc)5-1(A;Mfc)<7}. (7) 

The probability of gating the truth measurement is 

where r(-) is the gamma function and nz is the dimension of the measurement space. Because the mea- 
surement error is assumed Gaussian, this norm is chi-square distributed. If the measurement error is not 
Gaussian, such as in the case of accounting for the underlying geometry of the system in the measurement, 
gating can still be carried out with some modification [ ]. 

As defined in Sections 1 and 2, at each time step there is exactly one measurement of unknown origin that 
is received. If the measurement falls within the gate, it is passed on for use in the EKF. If the measurement 
falls outside the gate, no measurement is passed to the EKF, and the EKF simply predicts forward one time 
step. 

3.4 Probabilistic Data Association 

Probabilistic Data Association has been used when multiple measurements are received at each time step 
in the tracking of an object in a region with uniformly distributed environmental clutter [ ]. Given this 
assumption (uniformly distributed clutter), the probability j3i of each measurement Zi being the true mea- 
surement from the object of interest is computed. The PDA is used in conjunction with a filtering algorithm, 
such as the EKF, where updated estimates Xi{k\k) due to each measurement Zi are computed and the overall 
updated state estimate is 

rat j 

x{k\k) = YJZi{k\k)(3l{k), (8) 
2=0 

where each Xi is of the form (6), rtik is the number of measurements at time fe, and 



£>(fc) = l, 
i=0 

i.e., the probabilities are mutually exclusive as well as exhaustive. When tracking in cluttered environments 
where multiple measurements are received at each time step, gating is often used to limit the computational 
complexity. When gating is used, rrik in (8) is the number of gated measurements. Thus for the system 
considered in this report, rrik = 1 always. 

When tracking in cluttered environments with some types of sensors (e.g., radar or sonar), the probability 
PD of detecting the object of interest is often less than 1. That is, at each time step, the probability Pp 
that one of the multiple measurements received is due to the object of interest is less than 1. For this report, 
PD = UI. 

The i = 0 case in {>•) represents the hypothesis that no true measurement from the object of interest is 
received at time k. This implies that for the type of sensor described in Section 2, if the one measurement 
per time step is determined to not be from the object of interest, the update (N) will be entirely based on 
the i = 0 case. 

The error covariance associated with (8) is 

P{k\k) = po{k)P{k\k - l) + [1 - Po{k)]Pcik\k) + P{k) 

where P{k\k — 1) is the same as is in the EKF, 

P{k) = W{k) Y^mMkHw-vikyik) W'ik) 

where 

u^k) = Zi{k) - z{k\k - I), 

u{k) = J2hikMk), 
i=l 

and 
Pc{k\k) = \I - W{k)H{k)]P{k\k - I). 

Clutter measurements are assumed to be uniformly distributed throughout the tracking volume with 
density 

where Vk is the volume of the validation region 

vk = cnz\'rS{k)\1/2 = cnzl
n'/2\sik)\1/2 

and nz is the dimension of the measurement and cnz is the volume of the n2-dimensional unit hypersphere. 
The Pi{k) probabilities are computed as [ 

A(fc) = 

Poik) 

&+Er=v 
i = l,...,mfc 

where 

and 

ei = exp ^(fc)5-1(fc)^(fc) 

b^X^Sik^^il-PDP^/Po 

= (27r/7)n'/2AT4/cni(l - PDPG)/PD. 



3.5    Kolmogorov-Smirnov Tests 

Kolmogorov-Smirnov (KS) tests provide another approach for determining the probability of whether a mea- 
surement in a set originated from the object of interest [ ]. Consider Xi,X2, •••, xn, independent observations 
of a random variable with unknown cumulative distribution function (CDF) F{x). If the hypothesis is 

H : F{x) = Fo{x), 

then any test of this hypothesis is a goodness-of-fit test [ ]. This hypothesis states that the theoretical CDF 
of the random variable is equal to the CDF from which actual measurements are drawn. The KS tests and 
many simple variants are goodness of fit tests. Empirical CDFs are formed for a window of n measurements 
and some metric is then applied to measure the distance between theoretical and empirical CDFs. 

For n ordered samples 
Z(l) < Xm  < .. < X H2) (n): 

the empirical cumulative distribution function is 

Sn{x) 

X < £(!) 

< x 

< X 

Xfr\   \ X ^ %{r-\-l) (9) 
L(n) 

If Fo{x) is the true, fully specified theoretical cumulative distribution function from which the samples 
are drawn, then from the strong law of large numbers 

lirn P{Sn(x) = Fo{x)} = 1. 
n—too 

Define the metric used for measuring the separation between theoretical and empirical CDFs to be 

An — {F0{x) - Sn{x))dx 

This is different from the usual measure of deviation 

Dn =sup|5,
n(a;) -.Fb(a;)| 

(10) 

(11) 

and its variants that are well developed for the KS test. The measure of deviation (11) proved to not 
be sensitive enough for the data association problem considered here. The metric (10) is more sensitive to 
incorrect measurements. This results from the fact that (10) largely takes advantage of how a single incorrect 
measurement affects the shape of the empirical CDF. When using (10) distinct peaks appear in this value 
for windows of n measurements that contain false measurements. Figure 1 shows these peaks in error for 
the two satellite system for which results are presented in Section 0. 

Measurements 

Figure 1: Peaks in error between empirical and theoretical CDFs around incorrect measurements 
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Figure 2: Satellites in close proximity with measurement mixing occurring 

There has been a large body of theory developed using Dn in (1 I), demonstrating many properties, such 
as the distribution of Dn is independent of the distribution FQ{X) for continuous CDFs [ ]. Critical values 
or thresholds dn{a) have also been established [ ,   ] such that 

P{Dn<dn{a)] = l-a 

where 1 — a is the confidence level. That is, if Dn < dn{a), then with probability 1 — a, the empirical 
CDF Sn{x) is formed from n samples drawn from Fo{x). However, there is currently no theoretical basis 
for specifying critical values for An in (10), and this is an area of future work. Section (i will show the 
performance of using (i 1) on the example discussed in Section 5. 

4    Computational Complexity 

The batch filter has historically found wide use throughout the aerospace tracking community. A probable 
reason for this is that the batch fiber converges to zero RMS error with the assumption of a perfect model. 
The batch filter has been used classically for problems where there is no measurement mixing. The capability 
of associating data is not directly built into the batch filter like it is in gating, the KS tests, and PDA. The 
batch filter can be used for the data association problem, but at a large cost in computational complexity. 

To illustrate the heavy computational complexity of applying the batch filter to the data association 
problem, consider the situation pictured in Figure 2. There are two satellites in similar orbits, i.e., they are 
in close proximity. A single ground based sensor produces three measurements after three time steps. The 
first and third measurements come from satellite A and the second from satellite B, which is assumed to 
not be of interest. The method by which the batch filter accomplishes data association is to minimize the 
covariance associated with the estimate over the set of possible hypotheses of measurement origin. The set 
of possible hypotheses for the two satellite system in Figure 2 is 

7 



Measurement 
Hypothesis 1 2 3 

a Y Y Y 
b Y Y N 
c Y N Y 
d Y N N 
e N Y Y 
f N Y N 
g N X Y 
h N N N 

Thus, the batch filter associates the three measurements by testing each of these hypotheses (i e   running 
he measurement through a batch filter with the corresponding assumptions) to find the one that m 1"^ 

the covanance of  he estate. Obviously for this ca.e the covariance will be minimized by hypothesis c 

Th   U^Z^       u^' there ^ 0nIy tW0 SatelliteS and three measurements taken over three time steps 
The batch fi ter must be run eight separate times to check the hypotheses of whether or not each ^1^1 

aTtrfiZ aTfT   H   T T^ ^^ " ^ ^ ^^ ^ ^Phonal complexity o^sm 
a batch filter at each mdmdual time step ^ 2fc, where k denotes the current number of time steps that have 
elapsed since measurements started to be taken. For the example above, k = 3. It is easy to see   hat as the 

rbaTcS mrS^ ^ —ementS ^ UP' ^ -P^tional complexity asLild whh^s m tne batch tilter for data association becomes intractable very quickly 
In contrast to this, the computational complexity of hypothesis testing does not show up in recursive 

methods ike the EKF and PDAF. These methods only take the current measurement as input  independn 
o  time elapsed since starting to take measurements (i.e., mk = 1, the number of meaTemeSs S fo 
filtering is always one at each time step).   Thus there is a constant amount of computatiral   omplexhy 
associated with these methods at each time step. complexity 

5    Orbital Description t- 

To actually run simulations for the purposes of testing these data association techniques   orbits for the 

L f: S ™S ^ r"1136'- • ^ "'^ ^ ^^ ^^^ "' termS 0f the Six ^^ orbtal element (aBt^lwu) denoting semi-major axis, eccentricity, inclination, right ascension of the ascending node 
argument o  perigee  and true anomaly. The sum of results for this report will be given for two   atehites hi 

^h^Tc^J "r * ^^ ^"^ "'^ ^ the ^^ With a Sli^ P^atiou in tL eccelSty 
Choosing a Cartesian basis corresponding to the ECI frame provides us with the most natural choice 

of coordmates for describing orbits. In simulation, the six orbital parameters are used to obtain po^t on 
and velocity initial conditions in Cartesian coordinates aligned with the ECI frame. Thus, the dynTrTcs 
describing the orbits are written down in this frame. The method by which the dynamics a solved" a 
straightforward approach using Lagrangian techniques. The resulting equations are simple 2-body d^amks 
the same equations can be found in any standard astro-dynamics text, for example [ 1 d>namics- 

Lagr^rfd^d^fSf ^ ^^ ^ ^^ ^ USinS ^r.La9ran9e formulations.   The 
L = KE-PE. (12) 

IZrTpE-M^ ECIrrame' t/^5^e^ is^ KE = l/™aatelHtei^ + ?y2 + i2) and the potential eueigy /-£, _ MsateUite.Gearthy/x2 + y2 + z2. 

The dynamics can then be directly obtained from the Euler-Lagrange equations 

_d <9L     dL _ 
dt'd4~'d^=0 (13) 



where q is the state vector q = (x, x, y, y, i, z). The resulting equations are 

/Ltx(t) 
x(t) 

x{t) = -x{t) 

m 

vit) = -rMt) 

m 

{x{t)2 + y{t)2 + z{t)2)3/2 

d_ 
dt" 
 wW  
(i(t)2+y(t)2 + 2(f)2)3/2 

d 
dt' 
 ^z{t)  
(x-(t)2+l/(f)2+2(t)2)3/2 

m = ftx{t) 

where /i = 3.986 ■ 105 km s~2. These equations are integrated in simulation to produce the "truth" orbits, 
i.e., the actual orbit with initial conditions specified by the six orbital parameters. At this point there is no 
noise added yet. 

The sensor is located on the surface of the earth, and the SEZ frame whose origin is aligned with the 
sensor's location is the frame in which measurements are assumed to be "taken." To generate "measurements" 
for the simulation, the positions of the orbits in ECI are first sampled at a specified rate. Process noise is 
added to these samples because the dynamics are written down in the ECI frame and the process noise 
is the noise associated with inadequacies in this model (see equation (1)). After adding process noise, a 
representation of the resulting "noisy" ECI samples is obtained in SEZ coordinates centered at the sensor's 
location through the use of rigid body transformations. 

Obtaining the SEZ representations of the orbits (with process noise added) is accomplished using a 
composition of rigid body transformations. The resulting transformation has the form 

<ki =93l-qi 

where qi is the homogeneous representation of the position vector qi = {x, y, z, 1) in frame 1, "■" is standard 
matrix multiplication, and g = (p, R) G SE{3). In general, g can be written as 

R    p 
^0     1 

and is such that 
931 = 532 ■ 921 (14) 

where i? is a standard Euler rotation matrix about the x, y, or z axes, p is the position vector {x,y,z), 
and "•" is again standard matrix multiplication. The notation g^i defines a rigid body transform g that 
allows us to transform objects represented in frame 1 to frame 3. The right hand side of equation (I 1) is a 
composition of rigid body transformations: the resulting transformation from frame 1 to frame 3 is just the 
transformation from frame 1 to 2 followed by the transformation from frame 2 to 3. For a more thorough 
description of rigid body transformations see [ ]. 

To transition between ECI and SEZ coordinates it is only necessary to know the earth's rotational rate, 
the latitude and longitude of the sensor's position on the earth, and the radius of the earth. These four 
quantities will describe four rigid body transformations. The first transformation is a time varying rotation 
about the earth's rotation axis (which in ECI is aligned with the 2-axis) at a rate equal to the earth's 
rotation rate, and aligns the frame such that it is not rotating with respect to the sensor. The second 
transformation is another rotation about the earth's rotational axis, which is constant and corresponds to 
the sensor's longitude. The next transformation is another rotation, this one about the y-axis of the frame 
by the correct amount of latitude corresponding to the sensor position. Finally, the last transformation is 
just a translation in the z-direction by the earth's radius. Thus the resulting rigid body transformation that 
takes points represented in ECI coordinates into SEZ coordinates is 



9ECI^SEZ = g{Per. R{0)) • ,9(0, RyW ■ §{0, R^)) ■ 5(0, RM*))) (15) 

where per = (0,0,6378.135 km), Ry an Euler rotation matrix corresponding to a rotation about the y-axis, 
ip the latitude at which the sensor is located, Rz an Euler rotation matrix about the-2-axis, (p the longitude 
at which the sensor is located, and 0{t) the earth's rotational rate. 

All of the samples produced in ECI coordinates undergo this transformation and we are left with (x, y, z) 
descriptions of the orbits in the SEZ frame. These transformations can clearly be seen in the short movie 
located at http://robotics. Colorado. edu/wiki/index.php/Travers:Satellites. 

The next step in obtaining measurements for the simulation is to then take the noisy samples expressed 
in an SEZ coordinate frame and represent them in R/Az/El coordinates. This transformation is defined by 

{R,Az,El) = (/x2 + y2 + z2, tan-1(-x/y),sin-1(2/v/a;2 + y2 + z2)). (16) 

Because the actual sensors take measurements in R/Az/El, measurement noise distributions are assumed to 
be represented in R/Az/El. This fact implies that measurement noise is added to the samples in R/Az/El. 

These measurements in R/Az/El represented in a sensor local frame then need to be transformed back 
into ECI coordinates so that they are in the form of equation ('-'). This is accomplished by doing the 
previously stated transformations in reverse order. Note that the inverse transformation for equation (Mi) is 

{x, y, z) = {-Rcos{Az) cos{El),Rsm{Az) cos{El),Rsm{El)), (17) 

and the rigid body transformation from SEZ coordinates to ECI coordinates is the matrix product on the 
right hand side of (15) in reverse order. 

The fact that measurements are taken in R/Az/El coordinates from an SEZ coordinate frame implies 
that the resulting measurement error covariance is most naturally represented in R/Az/El, i.e., the measure- 
ment noise distributions in all three directions R/Az/El are Gaussian. The measurement error covariance, 
Rn/Az/Eiik), must be represented in the ECI frame to correspond with the measurement and system model. 
The variance in each direction can be thought of as a member of the corresponding tangent space at each 
point, thus the transformation of the covariance has the form 

(*) 1 ■ (fliV-weiW) • I-srW 1   ■ (18' |(*))(«^/«W)(| 
where dx/dy is the Jacobian. In R/Az/El coordinates the measurement error covariance description is 
constant, under this transformation the measurement error covariance becomes time varying. A movie of how 
the three dimensional measurement error distribution changes as an object traverses an orbit, when viewed 
from ECI coordinates, can be found at http://robotics.colorado.edU/wiki/index.php/Travers:SateUites. 

6    Results 

Results are presented for a simulated system consisting of two satellites. A number of system parameters are 
varied to highlight performance over two specific objectives: tracking capability and correct identification of 
individual measurements as being from the satellite being tracked or not. 

Figure 3 displays the results of each of the filters described in Section 3 in terms of RMS position tracking 
error. The RMS error is the error between the filtered estimate of position at each discrete time and the 
actual position of the simulated satellite in orbit at each corresponding time. The cumulative average of 
the norms (standard Euclidean norm) of theses differences up to each time step are the values of the RMS 
calculation. 

The EKE without false measurements as well as the Batch filter are run on a list of measurements that do 
not include mixing (all the measurements are from the same satellite). These results are included as a basis 
for comparison. The same can be said about the "Samples Alone" plot. This plot is obtained by comparing 
the value of the position measurement of a single satellite expressed in ECI coordinates (with process noise 
and measurement noise added in the appropriate frames) to truth at each time step, then calculating the 
new RMS value including the cumulative normed difference up to that time step. This plot can be seen as 
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Figure 3: Comparison of various filter performances. The horizontal axis is time in seconds and the vertical 
RMS error in kilometers. The upper plot presents results for the case where the two satellites are further 
away (e/ = 0.01) from each other than the lower (ec = 0.0004). The UI=95%. 

how well the measurements from a single satellite do without any filtering. In terms of RMS error of tracking 
a single satellite where there is no measurement mixing, the batch filter performs better than the EKF. Both 
methods offer an improvement in tracking, measured in RMS error, over the measurements considered alone. 

The single satellite for which these results are stated is in a circular equatorial orbit. The radius of 
this orbit is r = 7078.14 km. The initial conditions are always such that the satellite starts on the .x-axis 
of the ECI frame. The results of the other filters evaluated here are all for a two satellite system. The 
uniformity index is 95%, meaning that 5% of the total measurements are from satellite 2, while it is satellite 
1 that we are trying to track. Proximity for these two satellites will be defined in terms of a perturbation 
in eccentricity. The first satellite is in the same orbit described above, i.e., a circular equatorial orbit with 
r = 7078.14 km. The second satellite is again equatorial, except that it is slightly elliptical with semi-major 
axis a = 7078.14 km. For the "Far" proximity case, ef = 0.01 and for the "Close" case ec = 0.0004. Over the 
measurement period of 2s, Sf corresponds to an average separation distance of 70.78 km and eK corresponds 
to an average separation of 8.9 km. The process noise associated with each component of the position is 
described by the normal distribution iV(0, (0.7)2km2). The process noise associated with each component of 
the velocity is described by the distribution A^O, (3)2(km/s)2). The distributions describing measurement 
noise in range, azimuth, and elevation are yV(0, (0.02)2km2), N{0, (0.01)2radians2), and N{0, (0.01)2radians2) 
correspondingly. Lastly, the time step is dt = 0.001 s. 

The PDA results are in general better than the EKF and converge faster than the Batch filter. The 
EKF with Gating does better than the EKF for the no mixing case as well as the EKF run on the results of 
the KS-Test. When the two satellites are far from each other, the EKF with Gating does noticeably better 
than the other two EKF results, while the EKF with KS does basically about as good as the EKF evaluated 
without any incorrect measurements. The EKF with Gating results do better because at this distance they 
not only gate out all of the incorrect measurements, but they also gate out the true measurements that are 
in effect "bad measurements." The EKF run on KS results and the EKF on true measurements alone are 
essentially the same because the KS test only removes the incorrect measurements, meaning that after the 
KS test is run, the resulting list of measurements is exactly the same as the list of measurements used to 
evaluate the EKF alone, except that in this case 5% of the measurements are removed by the test. 

When the two satellites are in close proximity the EKF results change slightly.   The EKF run on true 
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Figure 4: Comparison of PDA with gating performance as UI is varied. RMS error in kilometers are plotted 
against time in seconds. The satellites considered are both in equatorial orbits with a = 7078.14. The satellite 
being tracked has eccentricity, £t =0.1 and the satellite not being tracked has eccentricity, e/j = 0.11. 

measurements obviously does not change. Both the EKF with Gating and EKF with KS test do worse as 
the satellites come into closer proximity. The EKF with gating still does marginally better than the EKF 
on truth, but the KS test results are actually worse. This can be explained by looking at Figure 5. At 
the separation distance of 8.9 km, the KS test is almost completely failing. Thus most of the incorrect 
measurements are being left in the list of measurements and the filtering performance is adversely affected. 

Figure 1 illustrates the effect of varying the uniformity index (UI) on PDA filtering performance. As 
the UI goes down, filtering performance degrades. For the case plotted, two satellites in equatorial orbits 
are considered with a = 7078.14 km for each. The satellite being tracked has eccentricity, £( =0.1, and the 
"follower" satellite has eccentricity, Sfi =0.11. 

Described in Section 3, both gating and the KS test variant are methods of identifying individual mea- 
surements as being from the satellite being tracked or not. Figure 5 displays simulated results for the two 
satellite system where the separation distance between the two satellites is varied and the corresponding 
percentage of incorrect measurements correctly identified is calculated for each method. The separation 
distance is calculated from the average separation between satellites over the total measurement period. In 
simulation the separation distance is actually varied by varying the eccentricity of the orbit of satellite 2, 
other than this the system parameters are the same as above with UI = 95%. The KS test starts to have 
degraded performance at a higher separation distance than does gating, although above about 40 km both 

Figure 5: Comparison of Gating and KS methods at correctly identifying false measurements as the separa- 
tion distance between the two satellites is varied: UI=95%. 
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Figure 6: Comparison of Gating and KS variant as a function of the discrepancy between actual and modeled 
measurement error covariances. The UI=95%. The two satellites considered are in the "far" configuration 
(i.e., £/ =0.01). 

methods perfectly identify all of the false measurements. 
Correctly identifying incorrect measurements carries a tradeoff in gating: incorrectly identifying true 

measurements as false. The intent of this work is not only to correctly identify false measurements as false, 
but also to correctly identify true measurements as true while doing so. Figure 6 shows a particular situation 
in which gating struggles to correctly identify true measurements. For the case considered, UI = 95% and the 
two satellites are in the far configuration (i.e., the two satellites are in equatorial orbits, the satellite being 
tracked in a circular orbit and the satellite not being tracked having identical orbital element values except 
for a difference in eccentricity, e^ = 0.01). This figure plots the percentage of true measurements correctly 
identified as true as a function of how well the modeled and actual measurement error covariances match 
each other. Thus, at Signia=l the modeled and actual covariance's match each other perfectly. At Sigma=2 
the actual measurement error covariance is twice the modeled, and so on. As the discrepancy between actual 
and modeled measurement error covariance increases, the performance of gating can be seen to degrade 
quickly, while the KS test maintains its performance throughout. This is explained by the empirical basis 
from which the KS test can form "theoretical" CDFs. The KS test does not rely on an accurate model of 
the measurement error covariance. Rather, when the satellite of interest is not close to other space objects, 
"clean" unmixed measurements can be used to empirically determine the "theoretical" CDF for the satellite. 
Hence, the KS test also does not depend on Gaussian distributions of the measurement errors. 

7    Conclusions & Future Works 

This report has highlighted several key issues facing tracking and correct data association for multiple satellite 
systems where there is measurement mixing. Initial solutions to these issues were presented, and simulation 
results given. 

The first problem addressed was that of computational complexity, a common concern in typical tracking 
schemes for multi-body systems. The historical tendency to use batch filters for the purposes of filtering 
single body systems turns out to be computationally burdensome for multi-body systems with measurement 
mixing. As stated, the batch approach to data association grows as 2fc where fc is the number of time 
steps. For one measurement (of unknown origin) at each time step while tracking one satellite, the recursive 
methods such as the EKF and PDAF outlined in Section 3 have constant complexity. For this reason the 
recursive filtering methods are preferable for filtering satellite systems where there is measurement mixing. 

Simulation results where presented for a simple two satellite system with measurement mixing. The 
results where grouped into filtering performance and correct data association performance. The results show 
that of the data association and filtering algorithms considered, PDA with gating has the best performance 
although PDA by itself still offers a dramatic improvement over the standard EKF used by itself or in 
conjunction with the gating or KS techniques. 
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The data association problem was considered from two separate standpoints, the first being the identifica- 
tion of false measurements and the second the correct identification of true measurements while identifying 
false measurements. In terms of finding a minimum separation distance between satellites for which the 
identification of incorrect measurements is possible, gating is the preferred method of data association over 
the KS test variant. In terms of correctly identifying true measurements, the performance of gating contains 
tradeoffs and in general is not very robust to modeling errors in the system parameters. This was highlighted 
in the simulation results where the difference between modeled and actual measurement error covariances for 
the simulated system was varied. The empirical basis of the KS test variant allowed for perfect performance 
as the modeled covariance deviated further from the truth, while the gating method performance degraded. 
These results show that both gating and the KS test variant have favorable characteristics in different situ- 
ations. For this reason, one proposed avenue of future work is the development of a hybrid method of these 
two techniques such that the strongest qualities of each are used to produce a better data association method 
for systems with mixed measurements. 

Another focus of future work is to add various levels of complexity and fidelity to the two satellite, 
single sensor system considered in the Section (i. The first goal is to implement a network of sensors around 
the earth that take measurements of the satellites as they travel into and out of each individual sensor's 
range (which is limited to line of sight). The work presented in this report assumes that line of sight is 
not required for the sensor to make measurements (i.e., the single sensor on the surface of the earth is 
assumed to be able to track a satellite through an entire orbit). The network of sensors is a more realistic 
scheme and in theory could present added complications to the data association problem, especially in regions 
where the object being tracked switches from one sensor's range to another. Adding maneuvering to the 
individual satellites is another area of future work. With maneuvering, the data association problem can be 
studied for systems where two satellites are originally not in close proximity, but then one of the satellites 
moves toward the other ("chasing" it in a sense). In addition to a network of sensors and maneuvering, 
the effect of adding more satellites to the system will be considered in future work. The results presented 
in this report considered two satellites with proximity defined in a specific way (namely the two by one 
ellipse that results from a perturbation in eccentricity of two satellites in the same orbit with the same initial 
conditions). The techniques presented in this report are extendable to multi-satellite systems, but the overall 
level of complexity that results from having many satellites in varied degrees of proximity may require more 
advanced data association techniques. 
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